

Mathematical modeling of damage in an asynchronous electric motor
https://doi.org/10.24223/1999-5555-2025-18-1-59-64
Abstract
The paper presents brief statistics on damage to asynchronous electric motors, which serve as drives for the main equipment of metallurgical industry enterprises and for the auxiliary systems of electric power plants. It is noted that the most frequent faults include damage to the bearing unit, stator windings and rotor bars. Among the general statistics of failures of the electrical part of asynchronous electric motors, the majority are damages associated with the development of cracks or destruction of the bars of the squirrel-cage rotor winding. Operation of asynchronous electric motors with broken bars can lead to damage to the windings and the stator magnetic circuit, resulting in complete motor failure. The mathematical model of an asynchronous electric motor presented in this work enables the simulation of asynchronous electric motors with any number of damaged bars in a squirrel-cage rotor, facilitating the analysis of transient processes in the event of broken rotor bars.
The mathematical model proposed in the work can be used to determine the efficiency of existing methods for diagnosing the state of an asynchronous electric motor by means of their mathematical modeling or to determine criteria and develop new methods for diagnosing the electrical part of an asynchronous motor based on the analysis of transient processes in the stator windings in the event of damage to one or more rotor bars and damage to the stator windings.
About the Authors
S. V. DerkachevRussian Federation
58 Artema str., 283001, Donetsk
V. A. Sidorov
Russian Federation
58 Artema str., 283001, Donetsk
References
1. Potapenko A. O., Yusupova A. O., Latypov S. I. Sposob diagnostiki povrezhdeniya korotkozamknutoj obmotki rotora asinhronnogo dvigatelya v rezhime vybega. Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya: Energetika 2022; 22(1): 62–70. (In Russ.)
2. Bannov D. M. Metod diagnostiki obryvov sterzhnej rotora v asinhronnyh elektrodvigatelyah na osnove regressionnogo analiza modulya rezul'tiruyushchego vektora toka statora. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov 2022; 333(5): 196–208. (In Russ.)
3. Shcherbinina A. V. Ispol'zovanie dvojnogo spektral'nogo analiza pri diagnostirovanii asinhronnyh dvigatelej. Regional'naya informatika (RI-2020): XVII Sankt-Peterburgskaya mezhdunarodnaya konferenciya. Materialy konferencii, Sankt-Peterburg, 28–30 oktyabrya 2020 g., 2: 200–202. (In Russ.)
4. Ahmedov D. A., Ahmedov A. D. Diagnostika elektricheskih i mekhanicheskih neispravnostej asinhronnogo dvigatelya na osnove spektral'nogo analiza toka statora. Aktual'nye voprosy podgotovki kadrov po energeticheskim special'nostyam: II-ya Respublikanskaya nauchnaya konferenciya, SUMGAIT, 25–26 noyabrya 2021 g., 8: 134–137. (In Russ.)
5. Abdelhak G., Sid Ahmed B., Djekidel R. Fault diagnosis of induction motors rotor using current signature with different signal processing techniques. Diagnostyka 2022; 23(2): 1–9.
6. Hamza Sabir, Mohammed Ouassaid, Nabil Ngote. An experimental method for diagnostic of incipient broken rotor bar fault in induction machines. Heliyon 2022; 8(3): 1–13.
7. Prashant Kumar, Ananda Shankar Hati. Deep convolutional neural network based on adaptive gradient optimizer for fault detection in SCIM. Transactions 2021; 111: 350––359.
8. Starostina Ya. K., Tokarev A. D. Sistema diagnostiki raboty elektrodvigatelej na osnove ispol'zovaniya nejronnoj seti. Kazan digital week – 2024 : sbornik materialov Mezhdunarodnogo foruma, Kazan', 09–11 sentyabrya 2024 g. 2024: 433–441. (In Russ.)
9. Teplovaya diagnostika asinhronnogo dvigatelya. V. A. Stenin, A. S. Vishnyakov, P. V. Selyanin, D. D. Popovskij. Nauka XXI veka: vyzovy, stanovlenie, razvitie: Sbornik statej XVIII Mezhdunarodnoj nauchnoprakticheskoj konferencii, Petrozavodsk, 25 iyunya 2024 g. 2024: 6–10. (In Russ.)
10. Valiullin K. R., Tushev S. I. Algoritm perescheta temperatury asinhronnogo dvigatelya na osnove ekvivalentnoj teplovoj skhemy. Energeticheskie sistemy 2022; 2: 42–48. (In Russ.)
11. Safiullin R. A., Yangirov I. F. Issledovanie vibracii asinhronnogo elektrodvigatelya. Elektrotekhnicheskie i informacionnye kompleksy i sistemy 2021; 17(2): 41–54. (In Russ.)
12. Mirosh D. V., Gromіko I. L. Predposylki ocenki sostoyaniya asinhronnyh dvigatelej s pomoshch'yu vibrodiagnostiki. Innovacionnye processy v sovremennom obrazovanii: ot idei do praktiki: Materialy III Mezhdunarodnoj nauchno-prakticheskoj konferencii s ispol'zovaniem distancionnyh tekhnologij, Yaroslavl', 21 fevralya 2023 g. 2023: 265–267. (In Russ.)
13. Belyaev P. V., Golovskij A. P. Diagnostika neispravnostej asinhronnyh dvigatelej na rannih stadiyah povrezhdeniya. Dinamika sistem, mekhanizmov i mashin 2020; 8(3). 16–23. (In Russ.)
14. Vliyanie defektov korotkozamknutogo rotora asinhronnogo dvigatelya na MDS rotora i tok statora. G. D. Baranov, G. L. Demidova, D. V. Lukichev i dr. Elektrotekhnicheskie kompleksy i sistemy: Materialy I Vserossijskoj konferencii po elektricheskim mashinam v ramkah Mezhdunarodnoj nauchno-prakticheskoj konferencii 2022, (2): 190–206. (In Russ.)
15. Matematicheskaya model' asinhronnogo dvigatelya v mul'tifaznoj sisteme koordinat pri nesimmetrii rotornyh cepej. A. S. Glazyrin, V. I. Polishchuk, V. V. Timoshkin [i dr.] Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring gosresursov 2021; 332(10): 213–227. (In Russ.)
Review
For citations:
Derkachev S.V., Sidorov V.A. Mathematical modeling of damage in an asynchronous electric motor. Safety and Reliability of Power Industry. 2025;18(1):59-64. (In Russ.) https://doi.org/10.24223/1999-5555-2025-18-1-59-64