

Application of an inertial vacuum trap for separation of the solid phase of carbon dioxide from the flow of fuel combustion products of boiler units
https://doi.org/10.24223/1999-5555-2024-17-2-151-158
Abstract
The technological process of low-temperature purification of fuel combustion products of boiler units from carbon dioxide by freezing it in a turboexpander and separating from the fuel combustion products flow in a separator is considered.
The issue of separation of solid carbon dioxide from the flow of fuel combustion products of boiler units using a bag filter, an electric precipitator, a cyclone separator and an inertia-type separator is considered. Based on the analysis, the use of an inertial vacuum separator for separating the solid phase of carbon dioxide from the flow of fuel combustion products is proposed.
Solidworks and ANSYS CFX modules were used for numerical modeling. To solve, the equations of continuity, motion, energy, and the k-ε model equations are used. The closing equation is for the effective and turbulent viscosity. There is also a description of the forces affecting the movement of the dispersed phase. The stream is considered lightly dusty.
Numerical studies of the dispersed flow in the channel of an inertial-vacuum separator and in the previously used cyclone TsN-11 were carried out. The initial data for the calculation were taken based on the known mass flow rate and particle concentration, as well as from the continuity equation. From the results obtained, we can draw conclusions about a directly proportional relationship between the growth of the flow rate characteristics of the flow, the speeds along the flow path of the apparatus at the inlet and the resistance of the apparatus.
Besides, based on the obtained calculation results, it was concluded that it is necessary to additionally install a rotary industrial air blower in order to create the necessary pressure drop in the inertial vacuum separator. The economic and environmental feasibility of installing a rotary air blower is considered
The range of consumption of fuel combustion products has been determined at which the most effective purification of fuel combustion products from carbon dioxide in an inertial vacuum separator is possible within the technical characteristics of the refrigeration capacity of turborefrigeration machines.
About the Authors
N. V. KondratyevRussian Federation
644050, Siberian Federal District, Omsk Region, Omsk, Ave. Mira, 11
L. V. Mostovenko
Russian Federation
628605, Tyumen region, Khanty-Mansiysk Autonomous Okrug – Ugra, Nizhnevartovsk, st. Lenina, 56
References
1. Danilov M. M. Ocenka tochnosti inzhenernyh sposobov opredeleniya rezul'tatov processa vymorazhivaniya dioksida ugleroda. Nizkotemperaturnye i pishchevye tekhnologii v XXI veke: materialy IX Mezhdunar. nauch.-tekhn. konf. (Sankt-Peterburg, 13–15 noyab. 2019 g). 2019, (1): 24–29.
2. Zaprudin A. V. Reshenie voprosov utilizacii dymovyh gazov kotloagregatov. Sovremennye tendencii v nauke, tekhnike, obrazovanii: sb. nauch. tr. po materialam V Mezhdunar. nauch.-prakt. konf. (Smolensk, 15 iyulya 2019 g.). Smolensk, 2019: 54–57.
3. Ibragimova Yu. V. Vliyanie koagulyacii na processy rosta i izmeneniya chislennoj koncentracii kristallov dioksida ugleroda. Dni nauki i innovacij NOVGU: materialy XXVII nauch. konf. prepodavatelej, aspirantov i studentov NovGU (Velikij Novgorod, 06–11 apr. 2020 g.): v 3 ch. Novgor. gos. un-t im. Yаroslava Mudrogo 2020, (3): 289–296.
4. Mostovenko L. V. Modernizaciya inercionno-vakuumnogo zoloulovitelya. Safety and Reliability of Power Industry 2022, (15) 2: 120–125.
5. Paramonov A. M. Provedenie issledovatel'skih ispytanij na inercionnovakuumnom zolootdelitele. Industrial power engineering 2019, (12): 43–49.
6. Kondrat'ev N. V. Analiz effektivnosti primeneniya ustanovki nizkotemperaturnoj ochistki produktov sgoraniya topliva kotel'nyh agregatov ot dioksida ugleroda. Industrial power engineering 2022, 5 (49): 30–37.
7. Korshikova A. A. A mathematical model of the carbon dioxide production unit for a co-generation power station. Journal of Physics: Conference Series. 2020. 1683052004-1–052004-7. URL: https://iopscience.iop.org/article/10.1088/1742-6596/1683/5/052004 (data obrashcheniya: 28.05.2024).
8. Varenkov S. V. Termogazodinamicheskie harakteristiki radial'nogo turbodetandera gazovoj holodil'noj mashiny. Informacionnokommunikacionnye tekhnologii v pedagogicheskom obrazovanii 2019. 2 (59): 12–15.
9. Kondratev N. V. The efficiency analysis of the turbo air refrigerators for producing solid carbon dioxide from the boiler combustion products fow. Journal of Physics: Conference Se-ries. 2021, 1791: 012011-1–012011-7. URL: https://iopscience.iop.org/ article/10.1088/1742-6596/1791/1/012011 (data obrashcheniya: 28.05.2024).
10. Ciklon CN-11: [Elektronnyj resurs]. – Rezhim dostupa: https://ciklony.ru/ciklony-i-pyleuloviteli/ciklony-cn/ciklon-cn-11/ (data obrashcheniya: 28.05.2024).
11. Vozduhoduvka Rutsa 2RB: [Elektronnyj resurs]. – Rezhim dostupa: Vozduhoduvka Rutsa 2RB Vozduhoduvka rotornaya 95/5-V rotornaya: 3424 m3ch mbar 75 kVt (xn--b1aafanjn1ac3ccv.xn--p1ai) (data obrashcheniya: 28.05.2024).
Review
For citations:
Kondratyev N.V., Mostovenko L.V. Application of an inertial vacuum trap for separation of the solid phase of carbon dioxide from the flow of fuel combustion products of boiler units. Safety and Reliability of Power Industry. 2024;17(2):151-158. (In Russ.) https://doi.org/10.24223/1999-5555-2024-17-2-151-158