Preview

Надежность и безопасность энергетики

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Моделирование топочных процессов в современных теплогенераторах малой и средней производительности

https://doi.org/10.24223/1999-5555-2019-12-2-126-134

Полный текст:

Аннотация

Рассматриваются проблемы и обсуждаются результаты численного моделирования топочных процессов бытовых теплогенерирующих устройств. Конструкции бытовых генераторов, предназначенных для размещения непосредственно в помещениях, в последние десятилетия стремятся создавать все более и более компактными, что повышает коммерческую привлекательность продукции, но ведет к снижению размеров топки и ухудшению условий развития в нем факела. На основе методов вычислительной гидродинамики проведено исследование топочных процессов в теплогенераторах Unimat UT-L18 «Bosch», «FEG» Beata 2 и Vitodens 100- W «Viessmann». Рассмотрено горение смесей метана с воздухом и кислородом. Разработаны геометрические модели топок, соответствующие их конструктивным особенностям. Определены необходимые граничные условия процессов сжигания газового топлива, представлены температурные, скоростные и концентрационные поля в них. Уделено особое внимание получению физически адекватных распределений аэродинамических и теплотехнических характеристик пламенной зоны для каждой из составленных моделей. Теплотехническая и аэродинамическая корректность численных расчетов являются необходимым условием адекватности расчетов окисления метана. Очевидно, без этого принципиально невозможно обсуждение совершенства топочных процессов в исследованных аппаратах, а в данном случае имеет дополнительное значение, так как взаимодействие реагирующих компонентов рассчитывается по одностадийной схеме окисления. Поэтому продукты химического недожога отсутствуют, а полноту использования топлива можно установить только по концентрациям исходных и конечных реагентов. По результатам расчетов с подтвержденной корректностью выполнено сопоставление полноты завершения процесса окисления горючих компонентов топливовоздушной смеси в топках, различающихся между собой степенью стесненности факела. Созданные модели обеспечили возможность количественного анализа работы топочных и горелочных устройств данных теплогенераторов. Оценка совершенства топочных и горелочных устройств, произведенная на основе полученных результатов, позволит использовать в проектах систем децентрализованного и индивидуального теплоснабжения зданий наиболее совершенные типы теплогенераторов с повышенной эффективностью.

Об авторах

М. Р. Валеев
ООО «Газпром трансгаз Казань»
Россия
ул. Аделя Кутуя, д. 41, 420073, г. Казань


А. А. Дюдина
Казанский государственный архитектурно-строительный университет
Россия
ул. Зеленая, д. 3, 420043, г. Казань


А. Р. Фатихов
Казанский государственный архитектурно-строительный университет
Россия
ул. Зеленая, д. 3, 420043, г. Казань


М. Г. Зиганшин
Казанский государственный архитектурно-строительный университет; Казанский государственный энергетический университет
Россия

ул. Зеленая, д. 3, 420043, г. Казань;

ул. Красносельская, д. 51, 420066, г. Казань



Список литературы

1. Lipatnikov A. N., Sabelnikov V. A., Nishiki S., Hasegawa T. A direct numerical simulation study of the influence of flame-generated vorticity on reaction-zone-surface area in weakly turbulent premixed combustion. Phys. Fluids 2019; (31): 055101.

2. Aspden A. J., Day M. S., Bell J. B. Three-dimensional direct numerical simulation of turbulent lean premixed methane combustion with detailed kinetics. Combust. Flame 2016; (166): 266–283.

3. Wang H., Hawkes E. R., Savard B., Chen J. H. Direct numerical simulation of a high Ka CH4/air stratified premixed jet flame. Combust. Flame 2018; (193): 229–245.

4. Yu R., Lipatnikov A. N. Direct numerical simulation study of statistically stationary propagation of a reaction wave in homogeneous turbulence. Phys. Rev. E 2017; 95(6): 063101.

5. Chen W., Liu G. Numerical Investigation on the Flow, Combustion and NOx Emission Characteristics in a 10 MW Premixed Gas Burner. The Open Fuels & Energy Science Journal 2015; (8): 1–13.

6. Trisjono P., Kleinheinz K., Kang S., Pitsch H. Large eddy simulation of stratified and sheared flames of a premixed turbulent stratified flame burner using a flamelet model with heat loss. Flow Turbulence Combust 2014; (92): 201–235.

7. Vascellari M., Schulze S., Nikrityuk P., Safronov D., Hasse C. Numerical simulation of pulverized coal MILD combustion using a new heterogeneous combustion sub-model. Flow Turbulence Combust 2014; (92): 319–345.

8. Decan G., Broekaert S., Lucchini T., D’Errico G., Vierendeels J., Verhelst S. Evaluation of wall heat flux calculation methods for CFD simulations of an internal combustion engine under both motored and HCCI operation. Applied Energy 2018; (232): 451–461.

9. Валеев М. Р., Дюдина А. А., Фатихов А. Р., Зиганшин М. Г. Численные исследования совершенства сжигания газа в топках бытовых теплогенераторов. Известия КГАСУ 2019; 47(1): 184–193.

10. Aspden A. J., Day M. S., Bell J. B. Towards the distributed burning regime in turbulent premixed flames. The Journal of Fluid Mechanics. Cambridge University Press. Published online: 17 May 2019. https://doi. org/10.1017/jfm.2019;: 316.

11. Logachev K. I., Ziganshin A. M., Averkova O. A., Logachev A. K. A survey of separated airflow patterns at inlet of circular exhaust hoods. Energy & Buildings 2018; (173): 58–70.

12. Wu H., Wu J., Li Y., Shen J. Study on the Key Technology of CO2 Compression and Purification in Oxy-Fuel Combustion Coal-Fired Power Plant. Energy Fuels 2019; 33 (4): 3349–3356.

13. Wang Ch., Sun R., Liu Ch., Han T., Zhu Ch., Liu Y., Che D. Experimental Study on Morphology and Chemical Composition of Ash Deposition during Oxy-fuel Combustion of High-Alkali Coal. Energy Fuels 2019; 33 (4): 3403–3420.

14. Pan J. F., Wu D., Liu Y. X., Zhang H. F., Tang A. K., Xue H. Hydrogen/ oxygen premixed combustion characteristics in micro porous media combustor. Applied Energy 2015; (160): 802–807.

15. Seddighi S., Clough P. T., Anthony E. J., Hughes R. W., Lu P. Scale-up challenges and opportunities for carbon capture by oxy-fuel circulating fluidized beds. Applied Energy 2018; (232): 527–542.

16. Self S. J., Rosen M. A., Reddy B. V. Effects of Oxy-Fuel Combustion on Performance of Heat Recovery Steam Generators. European Journal of Sustainable Development Research 2018; 2(2): 22 (1–11).


Для цитирования:


Валеев М.Р., Дюдина А.А., Фатихов А.Р., Зиганшин М.Г. Моделирование топочных процессов в современных теплогенераторах малой и средней производительности. Надежность и безопасность энергетики. 2019;12(2):126-134. https://doi.org/10.24223/1999-5555-2019-12-2-126-134

For citation:


Valeev M.R., Dyudina A.A., Fatikhov A.R., Ziganshin M.G. Modeling furnace processes in modern heat generators of small and medium capacity. Safety and Reliability of Power Industry. 2019;12(2):126-134. (In Russ.) https://doi.org/10.24223/1999-5555-2019-12-2-126-134

Просмотров: 10


ISSN 1999-5555 (Print)
ISSN 2542-2057 (Online)