Preview

Safety and Reliability of Power Industry

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Modern directions for the development of hydrogen energy technologies

https://doi.org/10.24223/1999-5555-2019-12-2-89-96

Abstract

Hydrogen energy combines a set of technologies for the production, transportation, storage and use of a versatile secondary energy carrier — hydrogen. The energy use of hydrogen is formed from the possibilities of environmentfriendly generation of electricity and long-term storage without loss, including on a large scale. Questions related to the consumption of hydrogen as a promising environment-friendly and versatile energy carrier and energy storage in various sectors of the national economy were formulated in the early 70s of the last century after the first oil fuel crisis. It has become obvious that it is necessary to develop new, ecologically optimal energy technologies based on the use of renewable energy sources, nuclear energy, coal and versatile environment-friendly energy carriers, making it possible to replace non-renewable energy resources as these are depleted and become more expensive. Hydrogen as a secondary energy carrier reveals its potential in a global strategy for sustainable energy development in the 21st century, which confronts the challenges of irreversible climate change, unsustainable oil production and increasing environmental pollution. Hydrogen can play a key role in mainline transportation by road and rail, in coastal and international shipping, in air transport, as well as in long-term and seasonal storage of electricity in networks, relying mainly on local renewable energy sources and local raw materials. The decisive element in the commercialization of hydrogen fuel technologies in Russia at the current stage is the formation of cost-effective hydrogen-transport-energy complexes, in particular, within power generating facilities.

About the Authors

A. A. Filimonova
ФГБОУ ВО «Казанский государственный энергетический университет»
Russian Federation
ул. Красносельская, 51, 420066, г. Казань


A. A. Chichirov
ФГБОУ ВО «Казанский государственный энергетический университет»
Russian Federation
ул. Красносельская, 51, 420066, г. Казань


N. D. Chichirova
ФГБОУ ВО «Казанский государственный энергетический университет»
Russian Federation
ул. Красносельская, 51, 420066, г. Казань


A. G. Filimonov
ФГБОУ ВО «Казанский государственный энергетический университет»
Russian Federation
ул. Красносельская, 51, 420066, г. Казань


V. V. Kulichikhin
ФГБОУ ВО «Национальный исследовательский университет «МЭИ»
Russian Federation
ул. Красноказарменная, 14, 111250, Москва


References

1. REN21. Renewables 2016 Global Status Report. – Paris: REN21 Secretariat 2016.

2. U.S. Energy Information Administration. International Energy Outlook 2016 with Projections to 2040 www.eia.gov/forecasts/ieo2016

3. IEA. World Energy Outlook 2016. – Paris: IEA 2016.

4. Kochergin V. I., Glushkov S.P. Specifics of solving problems of ensuring safety at implementation of innovative processes // News Bulletin of Perm National Research Polytechnical University. Safety and risk management 2016;(5): 203–209.

5. Dunikov D. O. Hydrogen energy technologies. In collection of papers: Hydrogen energy technologies. Materials of a seminar of the Hydrogen Energy Technologies Laboratory of the JIHT of RAS: collection of research papers. Moscow 2017;: 5–21.

6. Chichirova N. D., Vlasov S. M. Nanomaterials of membrane elements. Nanomaterials and nanotechnologies in power engineering. Monograph 2014;: 400.

7. Chichirov A. A. Fuel cells. Nanomaterials and nanotechnologies in power engineering. Monograph. Kazan State Power Engineering University. 2014;: 375.

8. Chichirova N. D., Chichirov A. A., Vlasov S. M., Gibadullina Kh. V. Nanotechnologies in development of fuel cells // Proceedings of Academenergo 2014; (3): 103–122.

9. International Energy Agency. Technology Roadmap: Hydrogen and Fuell Cells – 2014 edition. – Paris: OECD/IEA 2014.

10. Zoulias E. I., Lymberopoulos N. Hydrogen-based autonomous power systems: techno-economic analysis of the integration of hydrogen in autonomous power systems.: Springer 2008.

11. Hydrogen and Fuel Cells: Fundamentals, Technologies and Applications. Ed. Stolten D. — Weinheim, Germany : WILEY-VCH Verlag GmbH 2010;: 877.

12. Malyshenko S. P. Hydrogen as energy storage in power enineering // Russian Chemical Journal 2005; (XLI): 112–120.

13. da Roza A. Renewable sources of energy. Physical-engineering fundamentals: MPEI Publishing House 2010;: 704.

14. Schultz K. Use of the Modular Helium Reactor for Hydrogen Production, World Nuclear Association Annual Symposium, London, 3–5 September 2003.

15. Sinyak Yu. V. Simulation of the cost of hydrogen fuel in conditions of its centralized production. In collection of papers: Hydrogen energy technologies. Materials of a seminar of the Hydrogen Energy Technologies Laboratory of the JIHT of RAS: collection of research papers. Moscow 2017;: 39–56.

16. Brown L. C., Besenbruch G. E., Funk J. E., Marshall A. C., Pickard P. S., Showalter S. K., High Efficiency Generation of Hydrogen Fuels Using Nuclear Energy, A Nuclear Energy Research Initiative (NERI), Project for the U.S. Department of Energy, Hydrogen and Fuel Cells Annual Review 6 May 2002.

17. Levene M., Mann K., Margolis R., Milbrandt A., An Analysis of Hydrogen Production from Renewable Electricity Sources, Preprint J. I. National Renewable Energy Laboratory Prepared for ISES 2005 Solar World Congress Orlando, Florida August 6–12, 2005.

18. Hydrogen and Fuel Cells: Fundamentals, Technologies and Applications. Ed. Stolten D. – Weinheim, Germany : WILEY-VCH Verlag GmbH 2010;: 877.

19. Gupta R. B. Hydrogen fuel: production, transport, and storage. CRC Press 2008.

20. DOE. Energy requirements for hydrogen gas compression and liquefaction as related to vehicle storage needs. DOE Hydrogen and Fuel Cells Program Record, July 7th, 2009.

21. Verbetsky V. N., Malyshenko S. P., Mitrokhin S. V., Solovei V. V., Shmal'ko Y. F. Metal hydrides: properties and practical applications. Review of the works in CIS-countries // International Journal of Hydrogen Energy 1998; 12 (23): 1165–1177.

22. Lototskyy M. V., Tolj I., Pickering L., Sita C., Barbir F., Yartys V. The use of metal hydrides in fuel cell applications // Progress in Natural Science: Materials International 2017; 1(27): 320.

23. Lototskyy M. V., Yartys V. A., Pollet B. G., Bowman Jr R. C. Metal hydride hydrogen compressors: A review // International Journal of Hydrogen Energy 2014; 11(39): 5818–5851.

24. Borzenko V. I., Dunikov D. O. Feasibility analysis of a hydrogen backup power system for Russian telecom market // Journal of Physics: Conference Series 2017; (891) 1: 012077.


Review

For citations:


Filimonova A.A., Chichirov A.A., Chichirova N.D., Filimonov A.G., Kulichikhin V.V. Modern directions for the development of hydrogen energy technologies. Safety and Reliability of Power Industry. 2019;12(2):89-96. (In Russ.) https://doi.org/10.24223/1999-5555-2019-12-2-89-96

Views: 930


ISSN 1999-5555 (Print)
ISSN 2542-2057 (Online)