Preview

Safety and Reliability of Power Industry

Advanced search
Open Access Open Access  Restricted Access Subscription Access

PREDICTION OF STRENGTH REDUCTION FACTOR FOR WELDED JOINTS OF REDICTION OF STRENGTH REDUCTION FACTOR FOR WELDED JOINTS OF TURBINES WITH ULTRA SUPERCRITICAL STEAM PARAMETERS URBINES WITH ULTRA SUPERCRITICAL STEAM PARAMETERS

https://doi.org/10.24223/1999-5555-2017-10-3-223-231

Abstract

During long-term operation heat-resistant ferrite and martensitic steel welds have type IV cracking in a so-called ‘soft layer’, which contains part of fine grain region and inter-critical region of heat-aff ected zone (HAZ). The rupture of dissimilar welds occurs in the carbonless soft layer near fusion line. Therefore the strength reduction factor of welds decreases significantly with increasing lifetime and operating temperature.

Based on experimental investigations the design model is constructed to predict the welds strength reduction coefficient at the design stage, taking into account different structural and technological factors, also changes creep and fracture mechanisms. Creep strength tests of martensitic steel P91 welds and dissimilar welds P91 + Cr-Mo-V steel were performed at temperature of 620°С. The HAZ metal investigation was performed after the thermal welding cycle simulation at the «IMETCKTI» and «Gleeble-3800» units. In addition, numerical modeling was carried out, using the Kachanov-Rabotnov constitutive equations, taking into account the three stages of creep, the influence of complex stress state, changes creep and fracture mechanisms.

Based on the calculation results, the life time of P91 welds depends from the soft layer relative width and the creep rate ratio the base metal vs. the soft layer metal. A quantitative evaluation of the dissimilar welds creep strength is obtained using a sample model with two soft layers. Both have the same properties corresponding to the weakened region HAZ metal of the similar weld. According to the calculation results, the dissimilar welded samples rupture location moves to carbonless zone at lower stress level. Calculation results have good agreement with the experimental data. The obtained dependences are in good agreement with the theoretical and experimental studies of L. M. Kachanov, D. R. Hayhurst, V. N. Zemzin, R. Z. Schron et al. 

About the Authors

A. A. Lanin
Joint-Stock Company «I. I. Polzunov Scientifi c and Development Association on Research and Design of Power Equipment» («NPO CKTI»)
Russian Federation
Atamanskaya str., 3/6, 191167, Saint-Petersburg


S. A. Ilin
Joint-Stock Company «I. I. Polzunov Scientifi c and Development Association on Research and Design of Power Equipment» («NPO CKTI»)
Russian Federation
Atamanskaya str., 3/6, 191167, Saint-Petersburg


T. V. Prokhorova
Joint-Stock Company «I. I. Polzunov Scientifi c and Development Association on Research and Design of Power Equipment» («NPO CKTI»)
Russian Federation
Atamanskaya str., 3/6, 191167, Saint-Petersburg


V. V. Reva
Joint-Stock Company «I. I. Polzunov Scientifi c and Development Association on Research and Design of Power Equipment» («NPO CKTI»)
Russian Federation
Atamanskaya str., 3/6, 191167, Saint-Petersburg


References

1. Zemzin V. N. The welding joint heat resistance – Leningrad: Mashinostroenie, 1972. – 272 p.

2. Schron R. Z. About tensile strength of welding joint with a soft interlayer under creep conditions // Svarochnoe proizvodstvo. – 1970. – №5. – P. 6 – 8.

3. Schron R. Z., Korman A. I. Infl uence of the welded joints properties inhomogeneity in their tendency to brittle fracture in a creep conditions // Svarochnoe proizvodstvo. – 1972. – №12. – P. 12–14.

4. Bakshi O. A., Schron R. Z. About the welded joint with a soft interlayer strength estimation // Svarochnoe proizvodstvo. – 1971. – №3. – P. 3 – 5.

5. Lanin A. A., Ilin S. A., Prokhorova T. V. Investigation of dissimilar welded butt joints of thick-walled steam pipe systems of steam turbines // Tjazhjeloe mashinostroenie. – 2008. – №6. – P. 21 – 25.

6. Prokhorova T. V., Lanin A. A. Creep strength dissimilar and similar welded joints of creep resistant steels with a soft interlayer // «Обеспечение надежности теплоэнергетического оборудования в условиях длительной эксплуатации»: materials of II Int. conf. (Cheljabinsk, 17 – 21 May 2010). – Cheljabinsk, 2010. – P. 130 – 136.

7. Hayhurst D. R. CDM mechanisms-based modelling of tertiary creep: ability to predict the life of engineering components // Arch. Mech. – 2005. – v. 57, №2 – 3. – P. 103 – 132.

8. Tu S., Wu R., Sandström R. Design against creep failure for weldments in 0.5Cr0.5Mo0.25V pipe // Int. J. of Pres. Ves. and Piping. – 1994. – v. 58. – P. 345 – 354.

9. Hayhurst R. J., Mustata R., Hayharst D. R. Creep constitutive equations for parent, Type IV, R-HAZ, CG-HAZ and weld material in the range 565 – 640°C for Cr-Mo-V weldments // Int. J. of Pres. Ves. and Piping. – 2005 – v. 82. – P. 137 – 144.

10. Hyde T. H., Williams J. A., Becker A. A., Sun W. A review of the fi nite element analysis of repaired welds under creep conditions // OMMI. – 2003. – v. 2, №2. – URL: http://citeseerx.ist.psu.edu/viewdoc/ download?doi=10.1.1.515.98&rep=rep1&type=pdf (дата обращения 21.01.2017).

11. Eggeler G., Ramteke A. Analysis of creep in a welded ‘P91’ pressure vessel // Int. J. of Pres. Ves. and Piping. – 1994. – v. 60. – P. 237 – 257.

12. Perrin J. Hayhurst D. R., Ainsworth R. A. Approximate creep rupture lifetimes for butt welded ferritic steel pressured pipes // Eur. J. Mech. A/Solids. – 2000.– v. 19. – Р. 223 – 258.

13. Gaff ard V. Experimental study and modelling of high temperature creep fl ow and damage behaviour of 9Cr1Mo-NbV steel weldments: PhD thesis – France, 2004. – 329 p.

14. Gorash Y. Development of a creep-damage model for nonisothermal long-term strength analysis of high-temperature components operating in a wide stress range: PhD thesis. – Halle, 2008. – Р. 108.

15. Stepanova T. R., Prokhorova T. V. Modeling of the High Temperature Creep and Rupture under the Complex Stress State // Materials Science Forum. – 2016. – v. 870. – P. 528 – 534.

16. Dimmler G. P., Weinert G., Cerjak H. Extrapolation of short-term creep rupture data – The potential risk of over-estimation // IJPVP. – 2008. – v. 85. – P. 55 – 62.

17. Kloc L., Fiala J. On Creep Behaviour of Several Metallic Materials at Low Stresses and Elevated Temperatures // Chem. Papers – 1999 – v. 53, №3 – P. 155 – 164.

18. Esposito L., Bonora N. A primary creep model for Class M materials // Materials Science and Engineering A – 2011. – v. 528. – P. 5496 – 5501.

19. Kloc L. Internal stress model for pre-primary stage of low-stress creep // 15th International Conference on the Strength of Materials (ICSMA-15) J. Phys.: Conf. Ser. – 2010. – vol. 240, №1. – 012086 – URL: http://iopscience.iop.org/1742-6596/240/1/012086 (дата обращения 21.02.2016).

20. Kloc L., Sklenichka V. Infl uence of the loading history on the creep of the 9% chromium steel at low creep rates // METAL 2004 (13): Int. Conf. (Hradec nad Moravicí (CZ), 04.05.18-04.05.20). – Hradec nad Moravicí (CZ), 2004. – P. 1 – 7.

21. Guetsov L. B. Materials and Strength of the gas turbines details. two books, book 1. – Rybinsk: ООО «Publishing Hous «Gas turbine technology», 2010. – 611 p.

22. Eggeler G., Wiesner C. A numerical study of parameters controlling stress redistribution in circular notched specimens during creep // Journal of strain analysis – 1993. – v. 28. – P. 13 – 22.

23. Hancock J. W., Mackenzie A. C. On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states // J. Mech. Phys. Solids, – 1976. – v. 24. – P. 147 – 169.

24. Holmström S., Rantala J. Modeling and verification of creep strain and exhaustion in a welded steam mixer // Journal of Pressure Vessel Technology. – 2009. – v. 131, №6, 061405. – 5 p.

25. Penny R. K., Mariott D. L. Design for Creep – sec. ed. – London: Chapman&Hall, 1995. – 430 p.

26. Prokhorova T. V. Creep strength prediction of dissimilar CrMoV and 9 – 12% Cr steels welded joints: PhD thesis. – SPb, 2017. – 185 p.


Review

For citations:


Lanin A.A., Ilin S.A., Prokhorova T.V., Reva V.V. PREDICTION OF STRENGTH REDUCTION FACTOR FOR WELDED JOINTS OF REDICTION OF STRENGTH REDUCTION FACTOR FOR WELDED JOINTS OF TURBINES WITH ULTRA SUPERCRITICAL STEAM PARAMETERS URBINES WITH ULTRA SUPERCRITICAL STEAM PARAMETERS. Safety and Reliability of Power Industry. 2017;10(3):223-231. (In Russ.) https://doi.org/10.24223/1999-5555-2017-10-3-223-231

Views: 843


ISSN 1999-5555 (Print)
ISSN 2542-2057 (Online)