Preview

Safety and Reliability of Power Industry

Advanced search
Open Access Open Access  Restricted Access Subscription Access

БИОТЕХНОЛОГИИ НА ТЕПЛОВЫХ ЭЛЕКТРОСТАНЦИЯХ. ОБЗОР СОВРЕМЕННЫХ ТЕХНОЛОГИЙ И РАЗРАБОТОК

Abstract

The article overlooks the main trends in application of biotechnology for the thermal energetics including the purification of water and combustion gases, remediation of petrochemically polluted sites and conversion of ash dumps. The main technological solutions in these fields are demonstrated. The introduction of these technological solutions is economically beneficial today, especially the use of combustion gases from TPP for the cultivation of phototrophic microorganisms and their further conversion into a wide range of products (pharmaceutical substances, biofuel, animal food).

About the Authors

К. Горин
ФГБУ НИЦ «Курчатовский институт»
Russian Federation


А. Комова
ФГБУ НИЦ «Курчатовский институт»
Russian Federation


И. Конова
ФГБУ НИЦ «Курчатовский институт»
Russian Federation


А. Дьяков
ФГБУ НИЦ «Курчатовский институт»
Russian Federation


З. Намсараев
ФГБУ НИЦ «Курчатовский институт»
Russian Federation


В. Пожидаев
ФГБУ НИЦ «Курчатовский институт»
Russian Federation


А. Борголов
ФГБУ НИЦ «Курчатовский институт»
Russian Federation


Р. Василов
ФГБУ НИЦ «Курчатовский институт»
Russian Federation


References

1. Абрамов А. И. (ред.) Повышение экологической безопасности ТЭС. Москва: МЭИ, 2002. 378 с.

2. Оценка сырьевой базы Российской Федерации для производства топлива и энергии из биомассы / З. Б. Намсараев, П. М. Готовцев, А. В. Комова, А. В. Борголов, Я. Э. Сергеева, Р. Г. Василов // Вестник биотехнологии и физико-химической биологии имени Ю. А. Овчинникова. Т. 11, №4, 2015. С. 41 - 46.

3. Henze M., Harremoes P. Wastewater Treatment: Biological and Chemical Processes (third ed.). Heidelberg, Germany: Springer. 2002.

4. Bacterial contribution to dissolved organic matter in eutrophic Lake Kasumigaura, Japan / Kawasaki N., Komatsu K., Kohzu A., Tomioka N., Shinohara R., Satou T., Watanabe F. N., Tada Y., Hamasaki K., Kushairi M. R. M., Imai A. // Appl. Environ. Microbiol., vol. 79, no. 23, pp. 7160 - 8, 2013.

5. Progress toward isolation of strains and genetically engineered strains of microalgae for production of biofuel and other value added chemicals: A review / Ghosh A., Khanra S., Mondal M., Halder G., Tiwari O. N., Saini S., Bhowmick T. K., and Gayen K. // Energy Convers. Manag., vol. 113, pp. 104 - 118, 2016.

6. Carbon dioxide fixation and biomass production from combustion flue gas using energy microalgae / Zhao B., Su Y., Zhang Y., Cui G. // Energy, vol. 89, pp. 347 - 357, 2015.

7. Lifecycle assessment of microalgae to biofuel: Comparison of thermochemical processing pathways / Bennion E. P., Ginosar D. M., Moses J., Agblevor F., Quinn J. C. // Appl. Energy, vol. 154, pp. 1062 - 1071, 2015.

8. Biodiesel production via enzymatic catalysis/ Yuzbasheva E. Y., Gotovtsev P. M., Mostova E. B., Perkovskaya N. I., Lomonosova M. A., Butylin V. V., Sineokii S. P., Vasilov R. G. // Appl. Biochem. Microbiol., vol. 50, no. 8, pp. 737 - 749, 2014.

9. Готовцев П. М., Ломоносова М. А., Бутылин В. В., Мостова Е. Б., Перковская Н. И. Современные технологии получения биодизеля. Вестник биотехнологии и физико-химической биологии имени Ю. А. Овчинникова. Т.9, №3, 2013. C. 54 - 61.

10. Advanced biofuels from pyrolysis oil… Opportunities for cost reduction/ Arbogast S., Bellman D., Paynter J. D., Wykowski J. // Fuel Process. Technol., vol. 106, pp. 518 - 525, 2013.

11. Study on coal-fired power plant with CO2 capture by integrating molten carbonate fuel cell system / Duan L., Xia K., Feng T., Jia S., Bian J. // Energy, 2016.

12. Aquaporin-based biomimetic reverse osmosis membranes: Stability and long term performance / Qi S., Wang R., Chaitra G. K. M., Torres J., Hu X., Fane A. G. // J. Memb. Sci., vol. 508, pp. 94 - 103, 2016.

13. Biomimetic aquaporin membranes coming of age/ Tang C., Wang Z., Petrinić I., Fane A. G., Hélix-Nielsen C.//Desalination, vol. 368, pp. 89 -105, 2015.

14. Microscale to manufacturing scale-up of cell-free cytokine production - a new approach for shortening protein production development timelines / Zawada J. F., Yin G., Steiner A. R., Yang J., Naresh A., Roy S. M., Gold D. S., Heinsohn H. G., Murray C. J. // Biotechnol. Bioeng., vol. 108, pp. 1570 - 1578, 2011.

15. Conversion of CO2 into biomass by microalgae: How realistic a contribution may it be to signifi cant CO2 removal? / Gabriel Acien Fernandez F., González-López C. V., Fernández Sevilla J. M., Molina Grima E. // Appl. Microbiol. Biotechnol., vol. 96, no. 3, pp. 577 - 586, 2012.

16. US6648949 Патент на изобретение «System for small particle and CO2 removal from flue gas using an improved chimney or stack» / V. K. Der, J.-Y. Shang. 2003.

17. Design and synthesis of a minimal bacterial genome / Hutchison C. A., Chuang R.-Y., Noskov V. N., Assad-Garcia N., Deerinck T. J., Ellisman M. H., Gill J., Kannan K., Karas B. J., Ma L., Pelletier J. F., Qi Z.-Q., Richter R. A., Strychalski E. A., Sun L., Suzuki Y., Tsvetanova B., Wise K. S., Smith H. O., Glass J. I., Merryman C., Gibson D. G., Venter J. C. // Science, vol. 351, no. 6280, pp. 6253 - 6253, 2016.

18. Bioremediation for coal-fired power stations using macroalgae / Roberts D. A., Paul N. A., Bird M. I., de Nys R. // J. Environ. Manag., vol. 153, pp. 25 - 32, 2015.

19. Biological treatment of transformer oil using commercial mixtures of microorganisms/ Sobiecka E., Cedzynska K., Bielski C., Antizar-Ladislao B. // Int. Biodeterior. Biodegradation, vol. 63(3), pp. 328 - 333, 2009.

20. Ex situ bioremediation of a soil contaminated by mazut (heavy residual fuel oil) - A field experiment/ Beškoski V. P., Gojgić-Cvijović G., Milić J., Ilić M., Miletić S., Šolević T., Vrvić M. M. // Chemosphere, vol. 83(1), pp. 34 - 40, 2011.


Review

For citations:


 ,  ,  ,  ,  ,  ,  ,   . Safety and Reliability of Power Industry. 2016;(3):6-10. (In Russ.)

Views: 575


ISSN 1999-5555 (Print)
ISSN 2542-2057 (Online)