https://doi.org/10.24223/1999-5555-2020-13-1-56-58

К определению КПД турбодетандера

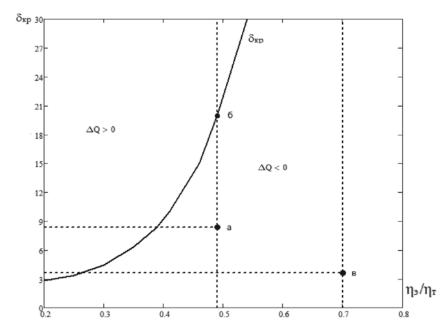
Закирова И.Р.

студентка НИУ «МЭИ»

Поступила / Received 20.03.2020 Принята к печати / Accepted for publication 23.03.2020

В европейских странах на ряде энергетических объектов применяются так называемые детандер-генераторные агрегаты (ДГА) или просто турбодетандеры.

В них используется перепад давления природного газа (ПГ), поступающего на электростанцию, который ранее терялся в дроссельных устройствах газораспределительного пункта (ГРП) этого объекта.


Интерес к турбодетандерам возник в России в связи с сооружением и вводом в эксплуатацию на ТЭЦ-21, а затем и на ТЭЦ-23 Мосэнерго двух энергокомплексов с двумя турбодетандерами в каждом с единичной мощностью по 5 МВт /1/.

За последующее время было опубликовано большое число статей и защищено диссертаций на тему использования турбодетандеров на КЭС и ТЭЦ, в которых рассматривались как практические, так и теоретические вопросы по данной теме.

Одной из первых была опубликована статья, в которой были представлены разработки по термодинамическим основам использования турбодетандеров на КЭС и ТЭЦ [2].

В [2] была приведена формула для расчета предложенной автором так называемой критической степени расширения природного газа /ПГ/ в турбодетандерах

$$\delta_{_{KP}} = (1-\eta_{_{\Theta}}/\eta_{_{T}})^{\,-1/m}$$

Рисунок 1. Зависимость критической степени расширения в турбодетандоре от отношения $\eta_{_3}/\eta_{_{\rm T}}$

где $\eta_{_9}/\eta_{_T}$ — отношение абсолютного электрического КПД $\eta_{_9}$ ТЭЦ или КЭС к относительному электрическому КПД турбодетандера $\eta_{_T}$, а $m=(\kappa-1)/\kappa$, где κ — показатель изоэнтропы.

В [2] была показана графическая зависимость $\delta_{\rm кp}$ от отношения $\eta_{\rm 9}/\eta_{\rm r}$, которая подразделяет область возможных вариантов использования турбодетандеров на две зоны: зону с «положительной» экономией теплоты с $\Delta Q>0$ и зону с «отрицательной» экономией теплоты с $\Delta Q<0$ (см. рисунок 1, который заимствован из [2], в рисунок из статьи на оси абсцисс дополнительно были добавлены $\eta_{\rm 9}/\eta_{\rm r}=0.7$ и 0,8).

Автор [2] указал, что при степени расширения ПГ для турбодетандеров с различными отношениями $\eta_{\text{\tiny 9}}/\eta_{\text{\tiny T}}$ ниже представленной кривой «при нагреве ПГ экономия топлива будет уменьшатся и нагрев может быть оправдан только требованиями потребителя к температуре ПГ за турбодетандером».

В [2] отмечалось, что «для работающих КЭС абсолютный электрический КПД η_9 = 0,33 – 0,40, а для ТЭЦ (при физическом методе разделения экономии топлива на производство электроэнергии и производство теплоты) η_9 = 0,45 – 0,55».

В [2] был приведен пример расчета, из которого следовало, что при значениях для КЭС $\eta_9=0.37$ и для турбодетандера $\eta_{\scriptscriptstyle T}=0.75$ «нагрев ПГ целесо-

образен при степени расширения ПГ в детандере $\delta > \delta \kappa_p = 8,37$ (при m=0,23)».

Однако, как показано в [3], этот вывод неверен. Из рисунка видно, что точка «а» с этими координатами находится в зоне с $\Delta Q < 0$, т. е. нагрев ПГ перед турбодетандером нецелесообразен

Из кривой и расчета по вышеприведенной формуле критическая степень расширения ПГ в турбодетандере при $\eta_{_{9}}/\eta_{_{T}}=0.37/0.75=0.493\,$ равна $\delta_{\kappa p}=19.19$ (точка «б» на рисунке).

Выполним аналогичный расчет для ТЭЦ. Как указывалось в [2], абсолютный электрический КПД ТЭЦ $\eta_{\rm 9}$ составляет от 0,45 до 0,55. Примем для расчета среднее значение этого КПД: 0,50, а отношение $\eta_{\rm 9}/\eta_{\rm T}$ =0,50/0,75=0,66. Тогда значение $\delta_{\rm kp}$, рассчитанное по вышеприведенной формуле, будет составлять $\delta_{\rm kp}$ =109. Однако указанные значения критической степени расширения ПГ в настоящее

время недостижимы ни на одной тепловой электростанции.

Для реального турбодетандера, установленного на ТЭЦ-21 Мосэнерго по результатам испытаний в [4], степень расширения ПГ δ =3,596 и относительный электрический КПД турбодетандера $\eta_{\rm T}$ =0,714, т. е. $\eta_{\rm 9}/\eta_{\rm T}$ =0,50/0,714=0,70. На рисунке 1 показана точка «в» с такими координатами. Она находится в зоне с Δ Q<0, т. е. нагрев ПГ перед турбодетандером на ТЭЦ-21 Мосэнерго нецелесообразен. Этот вывод опровергает результаты [5] о высокой эффективности подогрева ПГ перед турбодетандером.

Для $\eta_{_{3}}/\eta_{_{T}}$ = 0,70 критическая степень расширения ПГ $\delta_{_{\rm KP}}$ составляет $\delta_{_{\rm KP}}$ = 186,67, что также недостижимо.

Выше уже отмечалось, что согласно /2/ для КЭС абсолютный электрический КПД $\eta_{\rm 9}$ составляет 0,33 – 0,40, а для ТЭЦ: 0,45 – 0,55.

Определим значение КПД турбодетандера для КЭС и ТЭЦ в диапазоне указанных значений абсолютного электрического КПД для различных отношений η_a/η_a

Полученные результаты представлены в таблицах 1 и 2 соответственно для КЭС и ТЭЦ.

Выполненные расчеты показали, что согласно приведенным в [2] термодинамическим основам КПД турбодетандера не изменяется в указанных диапазонах изменения абсолютного электрического КПД и постоянно остается равным 1,0 при различных отношениях $\eta_9/\eta_{\scriptscriptstyle T}$, что противоречит законам термодинамики (см. рис. 2 и 3)

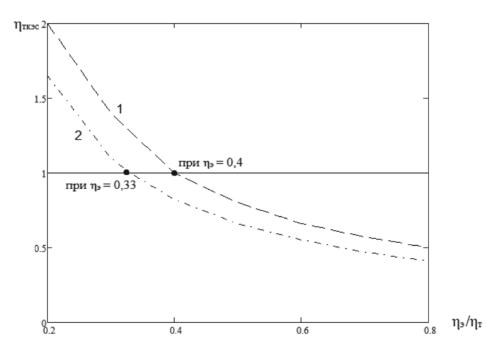

На рисунках 2 и 3 приведены кривые значений КПД турбодетандера для КЭС и ТЭЦ в зависимости от отношения $\eta_{\rm 9}/\eta_{\rm T}$ при минимальном и максимальном значениях абсолютного электрического КПД для КЭС и ТЭЦ соответственно. Из них видно, что при малых отношениях $\eta_{\rm 9}/\eta_{\rm T}$ КПД турбодетандера может достигать 2,0 для

Таблица 1. Значения $\eta_{\scriptscriptstyle T}$ для КЭС при различных значениях абсолютного электрического КПД КЭС и различных отношениях $\eta_{\scriptscriptstyle 2}/\eta_{\scriptscriptstyle T}$

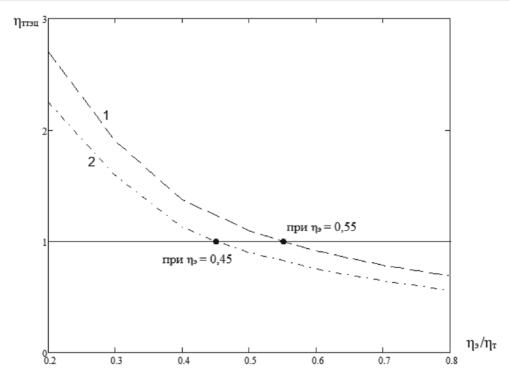

$\eta_{\scriptscriptstyle 9}$	$\eta_{_{9}}/\eta_{_{\mathrm{T}}}$	$\eta_{_{\mathrm{T}}}$
0,33	0,33	1,0
0,34	0,34	1,0
0,35	0,35	1,0
0,36	0,36	1,0
0,37	0,37	1,0
0,38	0,38	1,0
0,39	0,39	1,0
0,40	0,40	1,0

Таблица 2. Значения $\eta_{\rm T}$ для ТЭЦ при различных значениях абсолютного электрического КПД ТЭЦ и различных отношениях $\eta_{\rm a}/\eta_{\rm T}$

$\eta_{\scriptscriptstyle 9}$	$\eta_{\scriptscriptstyle 9}/\eta_{\scriptscriptstyle \mathrm{T}}$	$\eta_{\scriptscriptstyle \mathrm{T}}$
0,45	0,45	1,0
0,46	0,46	1,0
0,47	0,47	1,0
0,48	0,48	1,0
0,49	0,49	1,0
0,50	0,50	1,0
0,51	0,51	1,0
0,52	0,52	1,0
0,53	0,53	1,0
0,54	0,54	1,0
0,55	0,55	1,0

Рисунок 2. Зависимость относительного электрического КПД турбодетандеров $\eta_{\text{ткэс}}$ для КЭС от отношения $\eta_{\text{э}}/\eta_{\text{т}}$ при максимальном и минимальном значениях абсолютного электрического КПД КЭС $\eta_{\text{э}}$

Рисунок 3. Зависимость относительного электрического КПД турбодетандеров $\eta_{\rm ттэц}$ для ТЭЦ от отношения $\eta_{\rm 9}/\eta_{\rm T}$ при максимальном и минимальном значениях абсолютного электрического КПД ТЭЦ $\eta_{\rm 9}$

КЭС и 2,75 для ТЭЦ, что также противоречит законам термодинамики.

вывод

Изложенные в [2] «термодинамические основы» использования турбодетандеров на тепловых электростанциях противоречат законам термодинамики и, следовательно, требуют объяснений.

Список литературы

1. Степанец А. А., Горюнов И. Т., Гуськов Ю. Л. Энергосберегающие комплексы, основанные на использовании перепада давле-

ния на газопроводах. Теплоэнергетика, 1995, №6, с. 34-35.

- 2. Трухний А. Д. Термодинамические основы использования утилизационных турбодетандерных установок. Вестник МЭИ, 1999, №5, с. 11 15.
- 3. Закирова И. Р., Куличихин В. В. Определение оптимальных режимов эксплуатации детандер-генераторных агрегатов на тепловых электростанциях. Энергосбережение и водоподготовка, 2018, \mathbb{N}^2 3 (113), c. 52 58.
- 4. Куличихин В. В., Кудрявый В. В., Чижов В. В., Лазарев Л. Я. Методика и результаты исследования характеристик детандер-генераторного агрегата. Вестник МЭИ, 2001, №4, с.19–24.
- 5. Агабабов В. С. Влияние детандер-генераторных агрегатов на тепловую экономичность тепловых электростанций. Дисс. на соискание уч. степени д. т. н. Москва, МЭИ (ТУ), 2003.

